Recent quotes:

“Inverse vaccine” shows potential to treat multiple sclerosis and other autoimmune diseases | Pritzker School of Molecular Engineering | The University of Chicago

The inverse vaccine, described in Nature Biomedical Engineering, takes advantage of how the liver naturally marks molecules from broken-down cells with “do not attack” flags to prevent autoimmune reactions to cells that die by natural processes. PME researchers coupled an antigen — a molecule being attacked by the immune system— with a molecule resembling a fragment of an aged cell that the liver would recognize as friend, rather than foe. The team showed how the vaccine could successfully stop the autoimmune reaction associated with a multiple-sclerosis-like disease. “In the past, we showed that we could use this approach to prevent autoimmunity,” said Jeffrey Hubbell, the Eugene Bell Professor in Tissue Engineering and lead author of the new paper. “But what is so exciting about this work is that we have shown that we can treat diseases like multiple sclerosis after there is already ongoing inflammation, which is more useful in a real-world context.”

Exercise promotes healthy living and a healthy liver -- ScienceDaily

Remarkably, ultrasound elastography revealed that the exercise regimen reduced liver steatosis by an additional 9.5%, liver stiffness by an additional 6.8%, and the FibroScan-AST Score (a measure of liver fibrosis) by an additional 16.4% over the weight-loss regimen. Additionally, the exercise regimen altered the circulating concentrations of specific organokines and apparently induced anti-inflammatory and anti-oxidative stress responses through activation of the Nrf2 (nuclear factor E2-related factor 2), an oxidative stress sensor. It also enhanced the phagocytic capacity of Kupffer cells which help maintain liver function.

How intermittent fasting changes liver enzymes and helps prevent disease: Research on mice reveals surprising impact on fat metabolism -- ScienceDaily

"For the first time we showed that HNF4-(alpha) is inhibited during intermittent fasting. This has downstream consequences, such as lowering the abundance of blood proteins in inflammation or affecting bile synthesis. This helps explain some of the previously known facts about intermittent fasting," Dr Larance said. The researchers also found that every-other-day-fasting -- where no food was consumed on alternate days -- changed the metabolism of fatty acids in the liver, knowledge that could be applied to improvements in glucose tolerance and the regulation of diabetes.