Recent quotes:

The Social Life of Forests - The New York Times

In some of her earliest and most famous experiments, Simard planted mixed groups of young Douglas fir and paper birch trees in forest plots and covered the trees with individual plastic bags. In each plot, she injected the bags surrounding one tree species with radioactive carbon dioxide and the bags covering the other species with a stable carbon isotope — a variant of carbon with an unusual number of neutrons. The trees absorbed the unique forms of carbon through their leaves. Later, she pulverized the trees and analyzed their chemistry to see if any carbon had passed from species to species underground. It had. In the summer, when the smaller Douglas fir trees were generally shaded, carbon mostly flowed from birch to fir. In the fall, when evergreen Douglas fir was still growing and deciduous birch was losing its leaves, the net flow reversed. As her earlier observations of failing Douglas fir had suggested, the two species appeared to depend on each other.

Time Might Only Exist in Your Head. And Everyone Else's | WIRED

However, the two scientists who penned this recent paper say that, in the Wheeler-DeWitt equation, gravity's effects kick in too slowly to account for a universal arrow of time. "If you look at examples and do the math, the equation doesn't explain how time's direction emerges," says Robert Lanza, a biologist, polymath, and co-author of the paper. (Lanza is the founder of biocentrism, a theory that space and time are constructs of biological sensory limitations.) In other words, those nimble quantum particles ought to be able to keep their property of superposition before gravity grabs hold. And if, say, gravity is too weak to hold an interaction between two molecules as they decohere into something larger, then there's no way it can force them to move in the same direction, time-wise.