Recent quotes:

Fruit-fly study sheds light on why vibrations help rock baby to sleep | by Psych News Daily | Dec, 2020 | Medium

The flies’ sleep duration is longer when they are “rocked,” and intrusive lights are less likely to wake them up. Vibrations also make the fruit flies sleep better — they are more alert afterwards, and behave as if they had slept longer than they actually had. This in turn lets them function better, even when they have had less sleep.

Hub linking movement and motivation in brain identified -- ScienceDaily

lateral septum (LS), a region considered integral to modulating behavior and implicated in many psychiatric disorders, directly encodes information about the speed and acceleration of an animal as it navigates and learns how to obtain a reward in an environment. "Completing a simple task, such as acquiring food for dinner, requires the participation and coordination of a large number of regions of the brain, and the weighing of a number of factors: for example, how much effort is it to get food from the fridge versus a restaurant," said Hannah Wirtshafter, the study's lead author. "We have discovered that the LS may be aiding you in making some of those decisions. That the LS represents place, movement, and motivational information may enable the LS to help you integrate or optimize performance across considerations of place, speed, and other environmental signals."

Allen Neuringer's Many Decades of Self-Experimentation - Quantified Self

Allen proceeded to test the effects of movement on his cognitive abilities. He tested memory at first. He had flashcards with faces on one side and names on the other. His A condition would be to run two miles or swim 20 laps and then review 20 of the cards recording how many he got right. The B condition would be to spend the same amount of time working at his desk before reviewing the cards. The effect was clear. His ability to memorize was better after activity. But how does one test idea generation? Allen’s method was to spend 15 minutes moving around in a “quasi-dance” manner and noted any ideas he had on a notecard, writing the date and the condition on the back side, in this case, “move”. He then compared those cards to ones generated during a 15 minute period sitting at a desk. He repeated these AB intervals over the course of weeks, accumulating piles of cards. Months later he went through the cards and evaluated the quality of the ideas, looking at whether or not they were good and how creative they were. He didn’t know which conditions they were, since “sit” and “move” were written on the back side. He calculated the number of subjectively judged “good” ideas for each condition. Again, he noticed there were clear differences. Movement helped. Movement also helped with reading. Allen rigged a book holder out of an old backpack and through his testing found out that he surprisingly reads faster while moving and retains more. But was moving always better? Allen looked at his problem solving abilities in the move and sit conditions, using a similar method that he used for testing idea generation. He found that moving tended to make problem solving easier, with one significant exception: problems involving mathematical reasoning were more difficult to do while moving.