Recent quotes:

Gamma wave - Wikipedia

A number of experiments conducted by Rodolfo Llinás supports a hypothesis that the basis for consciousness in awake states and dreaming is 40-Hz oscillations throughout the cortical mantle in the form of thalamocortical iterative recurrent activity. In two papers entitled "Coherent 40-Hz oscillation characterizes dream state in humans” (Rodolfo Llinás and Urs Ribary, Proc Natl Acad Sci USA 90:2078-2081, 1993) and "Of dreaming and wakefulness” (Llinas & Pare, 1991), Llinás proposes that the conjunction into a single cognitive event could come about by the concurrent summation of specific and nonspecific 40-Hz activity along the radial dendritic axis of given cortical elements, and that the resonance is modulated by the brainstem and is given content by sensory input in the awake state and intrinsic activity during dreaming. According to Llinás’ hypothesis, known as the thalamocortical dialogue hypothesis for consciousness, the 40-Hz oscillation seen in wakefulness and in dreaming is proposed to be a correlate of cognition, resultant from coherent 40-Hz resonance between thalamocortical-specific and nonspecific loops. In Llinás & Ribary (1993), the authors propose that the specific loops give the content of cognition, and that a nonspecific loop gives the temporal binding required for the unity of cognitive experience.

Why visual stimulation may work in fight against Alzheimer's: Mouse study - Neuroscience News

Tsai’s original study on the effects of flickering light showed that visual stimulation at a frequency of 40 hertz (cycles per second) induces brain waves known as gamma oscillations in the visual cortex. These brain waves are believed to contribute to normal brain functions such as attention and memory, and previous studies have suggested that they are impaired in Alzheimer’s patients. Tsai and her colleagues later found that combining the flickering light with sound stimuli — 40-hertz tones — reduced plaques even further and also had farther-reaching effects, extending to the hippocampus and parts of the prefrontal cortex. The researchers have also found cognitive benefits from both the light- and sound-induced gamma oscillations. In their new study, the researchers wanted to delve deeper into how these beneficial effects arise. They focused on two different strains of mice that are genetically programmed to develop Alzheimer’s symptoms. One, known as Tau P301S, has a mutated version of the Tau protein, which forms neurofibrillary tangles like those seen in Alzheimer’s patients. The other, known as CK-p25, can be induced to produce a protein called p25, which causes severe neurodegeneration. Both of these models show much greater neuron loss than the model they used for the original light flickering study, Tsai says. The researchers found that visual stimulation, given one hour a day for three to six weeks, had dramatic effects on neuron degeneration. They started the treatments shortly before degeneration would have been expected to begin, in both types of Alzheimer’s models. After three weeks of treatment, Tau P301S mice showed no neuronal degeneration, while the untreated Tau P301S mice had lost 15 to 20 percent of their neurons. Neurodegeneration was also prevented in the CK-p25 mice, which were treated for six weeks.